Induction of growth inhibition and G₁ arrest in human cancer cell lines by relatively low-toxic diamantane derivatives

Jane-Jen Wang^a, Kuo-Tong Huang^b and Yaw-Terng Chern^c

We describe the discovery of a novel series of antitumor diamantane derivatives which induces G1 arrest in Colo 205 cells. Eight diamantane derivatives were screened for their activity in vitro against 60 human cancer cell lines in the National Cancer Institute (NCI)'s anticancer drug screen. The relationships between structure and in vitro antitumor activity are discussed. The structure-activity relationship (SAR) study of diamantane derivatives clarified that the conformation of 1,6-bis(4-(4-aminophenoxy)phenyl)diamantane (1,6-DPDONH₂) was essential for significant antitumor activity. Very strong growth inhibition of 1,6-DPDONH2 (NSC-706829) was observed against one colon cancer line (Colo 205), four melanoma lines (MALME-3M, M14, SK-MEL-5 and UACC-257) and two breast cancer lines (MDA-MB-435 and MDA-N) with GI₅₀ <1.0 μM, i.e. below 0.01, 0.23, 0.48, 0.5, 0.32, 0.26 and 0.28 μM, respectively. 1,6-DPDONH₂ also exhibited particular selectivity against one colon cancer line (Colo 205), four melanoma lines (MALME-3M, M14, SK-MEL-5 and UACC-257) and two breast cancer lines (MAD-MB-435 and MDA-N) with $GI_{50} \le 0.5 \,\mu\text{M}$. In the same cancer subpanel, the selectivity of 1,6-DPDONH₂ between these seven most sensitive lines and the least sensitive line ranged from 40- to 100-fold. With the exception of

Introduction

Adamantane derivatives possess several attractive pharmacological activities, such as antibacterial, antifungal, antiviral and anticancer effects [1-4]. Therefore, many investigators consider them as highly promising candidates in drug design [5–7]. For example, the aminoadaderivatives mantane memantine (1-amino-3,5dimethyladamantane) and amantadine (1-aminoadamantane) are uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists which have been used clinically in the treatment of dementia and Parkinson's disease for several years without serious side-effects [5,6]. Adamantane and diamantane are closely analogous polycyclic alkanes with the structure of three and six fused cyclohexane rings, respectively. Although diamantane derivatives have been investigated by chemists for many years, only a few studies of the biological activity of diamantane derivatives have been reported [8]. To the best of our knowledge, the present study is the first report that refers to the in vitro antitumor activities of diamantane derivatives.

Malignant tumor cells are clearly distinguished from normal cells by their chaotic proliferation due to a serious disorder

melanoma lines, 1,6-bis(4-(4-amino-3-hydroxyphenoxy)-phenyl)diamantane (1,6-DPD/OH/NH $_2$) (NSC-706831) possessed stronger activity than 1,6-DPDONH $_2$ against almost all tested cancer lines. Very strong growth inhibition of 1,6-DPD/OH/NH $_2$ was observed against one leukemia line (HL-60(TB)), one NSCLC line (HOP-92), one ovarian cancer line (OVCAR-8) and one breast cancer line (T-47D) with GI $_{50}$ <1.0 μ M, i.e. 0.50, 0.85, 0.62 and 0.75 μ M, respectively. *Anti-Cancer Drugs* 15:277–286 © 2004 Lippincott Williams & Wilkins.

Anti-Cancer Drugs 2004, 15:277-286

Keywords: antitumor activities, diamantane, G₁ arrest

^aNational Taipei College of Nursing and ^bDepartment of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan and ^cDepartment of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

Correspondence to Y.-T. Chern, Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei 106, Taiwan.
Tel:+886 27376646; fax:+886 27376644; e-mail: cyt@ch.ntust.edu.tw

Received 27 May 2003 Revised form accepted 21 November 2003

of the cell-cycle regulatory machinery. Cell-cycle inhibitors or modulators that halt uncontrollable tumor growth are regarded as highly promising new therapeutic agents on human cancers [9]. Recent studies have shown that the G_1 phase of the cell cycle is an important period where various signals interact to determine the proliferation, quiescence, differentiation or apoptosis of cells [10,11].

In this study, we synthesized the diamantane derivatives, including 1,6-diaminodiamantane (1,6-DNH₂), 4,9-diaminodiamantane (4,9-DNH₂), 1,6-bis(4-aminophenyl)diamantane (1,6-DPDNH₂), 4,9-bis(4-aminophenyl)diamantane (4,9-DPDNH₂), 1,6-bis(4-(4-aminophenoxy)phenyl)diamantane $(1,6-DPDONH_2),$ 4,9-bis(4-(4aminophenoxy)phenyl)diamantane (4,9-DPDONH₂),1,6-bis(4-(4-amino-3-hydroxyphenoxy)phenyl)diamantane (1,6-DPD/OH/NH₂) and 1,6-bis(4-(4-amino-2-trifluoromethylphenoxy)phenyl)diamantane. The in vitro antitumor activities of those compounds were screened against the National Cancer Institute (NCI)'s 60 human cancer cell lines. In addition, we characterized the cell growth inhibition and cell-cycle progression by 1,6-DPD/OH/ NH₂ in Colo 205 colon cancer cells. We also evaluated the acute toxicity of 1,6-DPDONH₂ in BALB/c mice.

DOI: 10.1097/01.cad.0000119453.84063.de

0959-4973 © 2004 Lippincott Williams & Wilkins

1,6-Bis(4-hydroxyphenyl)diamantane was synthesized from 1,6-dibromodiamantane and phenol according to our previous method [12]. 1,6-DNH₂ [13], 4,9-DNH₂ [14], 1,6-DPDNH₂ [15], 4,9-DPDNH₂ [16], 1,6-DPDONH₂ [12], 4,9-DPDONH₂ [17] and 1,6-DPD/OH/NH₂ (unpublished data) were synthesized according to our previous methods.

General methods

A Bio-Rad FTS-40 FTIR spectrophotometer was used to record spectra of the KBr pellets. MS spectra were obtained using a JEOL DMS-D300 mass spectrometer.

¹H- and ¹³C-NMR spectra were recorded on a Bruker AM-400 Fourier transform nuclear magnetic resonance spectrometer using tetramethyl silane (TMS) as the internal standard. A Perkin-Elmer 240C elemental analyzer was used for the elemental analysis.

Synthesis of 1,6-bis(4-(4-nitro-2-trifluoromethylphenoxy)phenyl)diamantane

1,6-bis(4-hydroxyphenyl)diamantane mixture of (1.80 g,4.84 mmol), 2-chloro-5-nitrobenzotrifluoride $(2.30 \,\mathrm{g},$ 10.2 mmol), potassium carbonate (1.60 g, 11.6 mmol) and 35 ml of dry N,N-dimethylformamide (DMF) was refluxed at 160°C for 12 h under nitrogen. The reaction mixture was allowed to cool to room temperature and then poured into distilled water. The precipitate was collected by filtration to afford 2.51 g (69.15%) of pale yellow crystals: m.p. > 380°C; IR(KBr) 3065, 2890, 2864, 1538, 1496, 1345 cm⁻¹; MS (EI) m/z750 (M⁺, 100), 296 (82); ¹H-NMR (400 MHz, CDCl₃) δ 1.55-1.60 (m, 8H, H-3a, 5, 8a; 10a, 13, 14a), 1.62 (brs, 2H, H-4,9), 1.95 (d, J = 12.6 Hz, 4H, H-3e, 8e, 10e, 14e), 2.60 (brs, 4H, H-2, 7, 11, 12), 6.98 (d, J = 9.2 Hz, 2H, Hc), 7.09 (d, $J = 8.64 \,\text{Hz}$, 4H, H-b), 7.48 (d, $J = 8.8 \,\text{Hz}$, 4H, H-a), 8.29 (m, 2H, H-d), 8.57 (s, 2H, H-e); anal. calcd for $C_{40}H_{32}F_6N_2O_6$: C, 64.0; H, 4.27; N, 3.73; found: C, 63.96; H, 4.30; N, 3.71.

Synthesis of 1,6-bis(4-(4-amino-2-trifluoromethylphenoxy)phenyl)diamantane (1,6-DPD/CF₃/NH₂)

A 150-ml, three-necked, round-bottomed flask was charged with 1,6-bis(4-(4-nitro-2-trifluoromethylphenoxy)-phenyl)diamantane (2.00 g, 2.67 mmol), 100 ml of

Scheme 1

ethanol, 100 ml of tetrahydrofuran and 0.12 g of 10% palladium on carbon (Pd-C). The mixture was heated to reflux and hydrazine monohydrate (60 ml) was added dropwise to the mixture. After a further 72 h reflux, the catalyst was removed by hot filtration. The filtrate was poured into 50 ml of water to give 1.72 g (93.3%) of offwhite powder. The diamine (1,6-DPD/CF₃/NH₂) was purified by vacuum sublimation. m.p. > 350°C; IR(KBr) 3465, 3373, 3072, 2891, 2864, 1610, 1502 cm⁻¹; MS (EI) m/z 690 (M⁺, 100), 345 (95), 176 (100); ¹H-NMR(400 MHz, DMSO-d₆) δ 1.45–1.49 (m, 8H, H-3a, 5, 8a; 10a, 13, 14a), 1.68 (s, 2H, H-4,9), 1.79 (d, $J = 11.6 \,\mathrm{Hz}$, 4H, H-3e, 8e, 10e, 14e), 2.50 (s, 4H, H-2, 7, 11, 12), 5.42 (s, 4H,NH₂), 6.78–6.90 (m, 10H, H-c, f, g, i), 7.33 (d, $J = 8.4 \,\text{Hz}$, 4H, H-b); ¹³C-NMR (100 MHz, DMSO-d₆) δ 27.36 (C-4, 9), 32.70 (C-3, 8, 10, 14), 38.29 (C-2, 7, 11, 12), 40.65 (C-1, 6), 49.44 (C-5, 13), 110.56 (C-f), 116.62 (C-c), 118.58 (C-i) 122.83 (C-g), 126.57 (C-b), 120.73, 121.02, 121.32, 121.61 (q, C-j), 122.82, 124.89, 126.75, 128.81 (q, CF₃), 142.60 (C-h),142.75 (Ce), 145.44 (C-a), 155.57 (C-d); anal. calcd for C₄₀H₃₆F₆N₂O₂: C, 69.56; H, 5.22; N, 4.06; found: C, 69.48; H, 5.24; N, 3.97.

Scheme 2

The NCI's anticancer drug screen

A total of 60 human cancer cell lines were used for the NCI's anticancer drug screen, including the subpanels of leukemia, melanoma, and cancers of lung, colon, brain, ovary, renal, breast and prostate. These cell lines were adaptable to a single growth medium, and had reproducible profiles for growth and drug sensitivity. The detailed methods are described in the literature [18].

Cell culture and 1,6-DPD/OH/NH₂ treatments

Colo 205 cells (ATCC: CCL-222) were cultured in RPMI 1640 with 10% fetal bovine serum (Hyclone, Logan, UT). Cells were incubated in a humidified atmosphere of 5% $\rm CO_2$ in air at 37°C. 1,6-DPD/OH/NH₂ was dissolved in DMSO at a stock concentration of 10 mM and added to culture media at a final concentration of 0.1, 1 and 10 μ M. Cells were seeded at 6×10^5 cells/60-mm or 1×10^6 cells/100-mm dish in growth medium. The following day the cells were replenished with medium containing the 1,6-DPD/OH/NH₂. Cells were harvested and counted by a hemocytometer at 24, 48 and 72 h after treatment with 1,6-DPD/OH/NH₂, and used for further analysis.

Analysis of the reversibility of 1,6-DPD/OH/NH₂induced cycle arrest of Colo 205 cells

Cells $(1 \times 10^6/\text{dish})$ were seeded on a 10-cm dish and allowed to attach overnight, and then the medium was discarded and replenished with medium containing the 1,6-DPD/OH/NH₂ for incubation at 37°C for 3 days. At the end of 3 days, the media was discarded and the cells were replenished with fresh medium. Cells were harvested, and the cell-cycle progression analyzed by flow cytometry at day 3, 4 and 5 after withdrawal from 1, 2 or $4 \mu M$ 1,6-DPD/OH/NH₂ reatment for 72 h.

DNA staining

The Cycle TEST Plus DNA Reagent Kit (Becton Dickinson, San Jose, CA) was used for DNA staining. After washing the cells twice with Buffer Solution, the cell concentration was adjusted to 1.0×10^6 /ml and 0.5 ml of cell suspension was centrifuged at 400 g for 5 min at room temperature (20-25°C). The cell pellet was added to 250 µl of Solution A (trypsin buffer) and gently mixed. After incubation at room temperature for 10 min, 200 µl of Solution B (trypsin inhibitor and RNase buffer) was added to each tube, gently mixed and then incubated at room temperature for 10 min. This was followed by the addition of 200 µl of Solution C (propidium iodide stain solution) and incubated for 10 min in the dark on ice (2– 8°C). The sample was filtered through a 50-mm nylon mesh and used for flow cytometric analysis.

Cells (20 000) were analyzed on a FACSCalibur flow cytometer (Becton Dickinson) using an argon-ion laser (15 mW) with the incident beam at 488 nm. The red fluorescence (propidium iodide) was collected through a 585-nm filter. The data were analyzed using ModFit and Cellquest software on a Macintosh computer.

Acute toxicity of 1,6-DPDONH2 in BALB/c mice

The 8-week-old female and male BALB/c mice were obtained from the National Laboratory Animal Center of National Applied Research Laboratories (Taipei, Taiwan), and housed under conditions with the temperature maintained at 25°C and light controlled at a 12 h light/ 12 h dark cycle. 1,6-DPDONH₂ was dissolved in olive oil; treatment started when the body weight of the mice was 17-25 g. 1,6-DPDONH₂ was administered as a single dose via oral or i.p. injection at doses of 5 or 2 g/kg (volume of injection: 0.25 or 0.1 ml/10 g of body weight), respectively. The control group received olive oil vehicle. The body weight was monitored every 3-4 days throughout the experiment. ALT, AST and BUN were measured by the National Taiwan University Hospital's clinical biochemical laboratory (Taipei, Taiwan) at the end of the experiment. At day 14, all mice were sacrificed by CO₂ gas. The livers, kidneys and lungs were collected, fixed, embedded and stained with hematoxylin & eosin for pathological analysis.

Statistics

All data are expressed as mean ± SE. Difference between groups was assessed using Student's t-test. A p < 0.05 is considered as a significant difference.

Results and discussion Chemistry

In order to systematically evaluate the structure–activity relationship (SAR) study of diamantane derivatives, eight diamantane derivatives were synthesized. A novel 1,6-DPD/CF₃/NH₂ was synthesized from 1,6-bis(4-hydroxyphenyl)diamantane in two steps. Reaction of 1,6-bis(4hydroxyphenyl)diamantane with 2-chloro-5-nitrobenzotrifluoride in anhydrous DMF in the presence of potassium carbonate as an acid acceptor gave 1,6-bis(4-(4-nitro-2-trifluoromethylphenoxy)phenyl)diamantane, which was hydrogenated to give 1,6-DPD/CF₃/NH₂. We noted that the hydrogenation of the nitro compound bearing strong electron-withdrawing substituents (CF₃) is relatively difficult. More catalyst (Pd-C) and reaction time were necessary for the hydrogenation of 1,6-DPD/ CF₃/NO₂. When the nitro compound was converted into 1,6-DPD/CF₃/NH₂, the signal in ¹H-NMR appearing at 5.42 p.p.m. is peculiar to the amino group. In addition, results obtained from the elemental analysis, characteristic peaks in the NMR spectra and characteristic bands in the IR spectra confirmed the structures of 1,6-DPD/ CF_3/NH_2 .

SARs of diamantane derivatives

For comparison of antitumor activities of the diamantane derivatives, the 1,6-(1,6-DNH₂, 1,6-DPDNH₂ and 1,6-DPDONH₂) and 4,9-(4,9-DNH₂, 4,9-DPDNH₂ and 4,9-DPDONH₂) substituted diamantane derivatives were synthesized (Fig. 1). Table 1 shows the comparison of *in* vitro antitumor activities of the diamantane derivatives against the three cancer cell lines. Only 1,6-DPDONH₂ exhibited modest growth inhibitory activities against the three cancer cell lines. However, 4,9-DPDONH₂, 1,6-DPDNH₂, 4,9-DPDNH₂, 1,6-DNH₂ and 4,9-DNH₂ were virtually inactive. Comparison of the antitumor activities of 1,6-DPDONH₂ and 4,9-DPDONH₂ indicated that 4,9-DPDONH₂ was virtually inactive in vitro against the NCI's 60 human cancer cell lines. 1,6-DPDONH2 and 4,9-DPDONH₂ have a similar chemical structure (amine functional groups and diamantane backbone units). However, they have very different antitumor activity. For example, very strong growth inhibition of 1,6-DPDONH₂ was observed against one colon cancer line (Colo 205), four melanoma lines (MALME-3M, M14, SK-MEL-5 and UACC-257) and two breast cancer lines (MDA-MB-435 and MDA-N) with $GI_{50} < 1.0 \,\mu\text{M}$, i.e. below 0.01, 0.23, 0.48, 0.5, 0.32, 0.26 and $0.28\,\mu\text{M}$, respectively (see Table 2). The results suggest that the configuration of 1,6-DPDONH₂ plays a prominent role in their antitumor activities. We noted that the base moiety of 1,6-DPDONH₂ is a potential anticancer agent.

Fig. 1

Chemical structures of diamantane derivatives.

Table 1 In vitro antitumor activities of the diamantane derivatives

Compounds	GI50(μM)			
	NCI-H460 (lung cancer)	MCF7 (breast cancer)	SF-268 (CNS cancer)	
1,6-DPDONH ₂	25.9	37.0	37.7	
4,9-DPDONH ₂	>100	>100	>100	
1,6-DPDNH ₂	>100	>100	>100	
4,9-DPDNH ₂	>100	>100	>100	
1,6-DNH ₂	>100	>100	>100	
4,9-DNH ₂	>100	>100	>100	
1,6-DPD/CF ₃ /NH ₂	>100	>100	>100	
1,6-DPD/OH/NH ₂	4.21	5.07	4.37	

The antitumor activities of 1,6-DPDONH₂

1,6-DPDONH₂ was tested for its antitumor activity at five concentrations, i.e. 10^{-4} , 10^{-5} , 10^{-6} , 10^{-7} and 10^{-8} M. The values of GI₅₀ (50% growth inhibition), total growth inhibition (TGI) and LC₅₀ (50% cell killing) are summarized in Table 2.

As shown in Table 2, 1,6-DPDONH₂ exhibited growth inhibition against almost all the test cells from leukemia and solid tumors with $GI_{50} < 100 \,\mu\text{M}$. Very strong growth inhibition was observed against one colon cancer line

Table 2 The antitumor activities of 1,6-bis(4-(4-aminophenoxy)phenyl)diamantine (NSC-706829)

Panel/cell line	Gl ₅₀ (μM)	TGI (μM)	LC ₅₀ (μM)
Leukemia			
CCRF-CEM	13.1	>100	>100
HL-60(TB)	4.76	19.7	90.7
K-562	7.28 5.52	42.1 27.4	>100 >100
MOLT-4 RPMI-8226	8.89	30.5	>100
NSCLC	0.09	30.3	/100
A549/ATCC	11.3	>100	>100
EKVX	6.81	>100	>100
HOP-62	14.3	51.3	>100
HOP-92	2.1	7.54	>100
NCI-H226	25.8	95.7	>100
NCI-H23	36.7	>100	>100
NCI-H322M	12	>100	>100
NCI-H460	25.9	84.6	>100
NCI-H522	13.6	66.6	>100
Colon cancer	<0.04	40.04	0.05
Colo 205	< 0.01	< 0.01	0.37
HCT-116 HCT-15	6.38 20.8	54.7 >100	>100 >100
HC1-15 HT29	20.8 9.27	>100	>100
KM12	14.1	>100	>100
SW-620	18.2	>100	>100
CNS cancer	10.2	7 100	7 100
SF-268	37.3	>100	>100
SF-295	21	79.4	>100
SNB-19	12.7	>100	>100
U251	2.91	14.9	45.9
Melanoma			
LOX IMVI	19.4	>100	>100
MALME-3M	0.23	11.6	72.8
M14	0.48	27.4	>100
SK-MEL-2	4.33	30.3	>100
SK-MEL-28	1.13	>100	>100
SK-MEL-5 UACC-257	0.5 0.32	2.72 >100	17.3 >100
UACC-257 UACC-62	2.54	>100	>100
Ovarian cancer	2.04	> 100	> 100
IGROV1	26.2	>100	>100
OVCAR-3	6.5	29.7	>100
OVCAR-4	5.3	>100	>100
OVCAR-5	>100	>100	>100
OVCAR-8	36.2	>100	>100
Renal cancer			
786-0	11.9	64	>100
A498	22.2	66	>100
ACHN	2.87	>100	>100
CAKI-1	16.9	56	>100
RXF-393	21.9	71.6	>100
SN12C	15.9	>100	>100
TK-10 UO-31	37.2 3.79	>100 >100	>100 >100
Prostate cancer	3.79	/100	/100
PC-3	5.22	65.5	>100
DU-145	8.92	>100	>100
Breast cancer	0.02	7 .00	,
MCF-7	37	>100	>100
NCI/ADR-RES	>100	>100	>100
MDA-MB-231	9.08	65.7	>100
HS 578T	39.3	>100	>100
MDA-MB-435	0.26	15.4	>100
MDA-N	0.28	22.4	>100
BT-549	40.7	>100	>100
T-47D	8.5	>100	>100

(Colo 205), five melanoma lines (MALME-3M, M14, SK-MEL-28, SK-MEL-5 and UACC-257) and two breast cancer lines (MDA-MB-435 and MDA-N) $GI_{50} \le 2.0 \,\mu\text{M}$, i.e. below 0.01, 0.23, 0.48, 1.13, 0.5, 0.32, 0.26 and $0.28 \,\mu\text{M}$, respectively. 1,6-DPDONH₂ also

exhibited moderate growth inhibition against four leukemia lines (HL-60(TB), MOLT-4, RPMT-8226 and K-562), two NSCLC lines (EKVX and HOP-92), two colon cancer lines (HCT-116 and HT29), one CNS cancer line (U251), two melanoma lines (SK-MEL-2 and UACC-62), two ovarian cancer lines (OVCAR-3 and OVCAR-4), two renal cancer lines (ACHN and UO-31), two prostate cancer lines (PC-3 and DU-145) and two breast cancer lines (MDA-MB-231 and T-47D) with GI_{50} from 2 to 10 μM, i.e. 4.76, 5.52, 8.89, 7.28, 6.81, 2.1, 6.38, 9.27, 2.91, 4.33, 2.54, 6.5, 5.3, 2.87, 3.79, 5.22, 8.92, 9.08 and 8.5 μM, respectively. In the same cancer subpanel, selectivity more than 100-fold is observed between Colo 205 and HCT-116, HCT-15, HT29, KM12 and SW-620 in colon cancer. In addition, selectivity more than 40-fold is observed between LOX IMVI and MALME-3M, M14, SK-MEL-5 and UACC-257 in melanoma cancer.

In vitro antitumor activity of 1,6-substituted diamantane derivatives

To further confirm that the substituted groups of 1,6substituted diamantane derivatives affect the growth inhibition of cancer cells. 1,6-DPD/CF₃/NH₂ and 1,6-DPD/OH/NH₂ were synthesized (Fig. 2). Comparison of the antitumor activities of 1,6-DPDONH₂ and 1,6-DPD/ CF₃/NH₂ indicated that 1,6-DPD/CF₃/NH₂ was virtually inactive *in vitro* against the three cancer lines (Table 1). 1,6-DPDONH₂ and 1,6-DPD/CF₃/NH₂ have similar chemical structures (amine functional groups and diamantane backbone units). However, they have very different antitumor activity. It is likely that the configurations of 1,6-DPDONH₂ play a prominent role in their antitumor activities. This result suggested that structure I (Fig. 2) was essential for significant antitumor activity. The subsequent synthetic transformations of 1,6-DPDONH₂ to 1,6-DPD/OH/NH₂ led to a remarked enhancement of antitumor activity toward the three cancer lines (Table 1). The role of the OH group at the ortho position of the NH₂ on growth inhibition is remarkable. In addition, 1,6-DPD/OH/NH₂ remains in the configuration of 1,6-DPDONH₂ because the OH group is at the meta position of ether unit. In other words, 1,6-DPDONH₂ and 1,6-DPD/OH/NH₂ have similar conformations. The result also suggested that the structure I may function as the active core.

The antitumor activities of 1,6-DPD/OH/NH₂

1,6-DPD/OH/NH₂ was screened for its activity in vitro against 60 human cancer cell lines in the NCI's in vitro anticancer drug screen by the SRB assay. The values of GI_{50} and LC_{50} are summarized in Table 3. As shown in Table 3, 1,6-DPD/OH/NH₂ exhibited growth inhibition against almost all the test cells from leukemia and solid tumors with $GI_{50} < 100 \,\mu\text{M}$. Very strong growth inhibition was observed against one leukemia line (HL-60(TB)), one NSCLC line (HOP-92), one ovarian cancer line (OVCAR-8) and one breast cancer line (T-47D) with

$$\mathsf{H_2N} \longrightarrow \mathsf{CF_3}$$

1,6-bis(4-(4-amino-2-trifluromethylphenoxy)phenyl)diamantane (1,6-DPD/ $\mathrm{CF_3/NH_2}$) (NSC-711112)

1,6-bis(4-(4-amino-3-hydrophenoxy)phenyl)diamantane (1,6-DPD/OH/NH), (NSC-706831)

$$H_2N$$
 Y
 O
 NH_2

Structure I

Chemical structures of the 1,6-substituted diamantane derivatives.

 GI_{50} < 1.0 μ M, i.e. 0.50, 0.85, 0.62 and 0.75 μ M, respectively. 1,6-DPD/OH/NH2 also exhibited moderate growth inhibition against almost tested cancer lines with GI₅₀ from 1 to 10 µM. The data of response parameters in Table 3 can be plotted by the NCI's mean graph as shown in Fig. 3. The mean graph facilitates visual scanning of data for potential patterns of selectivity for particular cell lines or for particular subpanels with respect to a selected response parameters. The mean graph shows the pattern at each of the principal response parameters, i.e. GI₅₀, TGI and LC₅₀. The vertical line of each response parameter group represents the mean value of all test data against cell lines. Therefore, bars extending to the right represent sensitivity of the cell line in excess of the average sensitivity of all cell lines. Bars extending to the left imply sensitivity of the cell line less than the average sensitivity. The bars of those $\log_{10}GI_{50} < 5.7$ (i.e. $GI_{50} < 1.0 \,\mu\text{M}$ in Table 3) extending to the right by approximately 0.6 include HL-60(TB), HOP-92, OVCAR-8 and T-47D cell lines from four subpanels, suggesting the responses against these cell lines are more selective than other lines. However, selectivity was almost less than 10-fold in the same cancer subpanel.

Comparison of antitumor activities of 1,6-DPDONH₂ and 1,6-DPD/OH/NH₂

Comparison of antitumor activities of 1,6-DPDONH₂ and 1,6-DPD/OH/NH₂ indicated that 1,6-DPD/OH/NH₂ possessed stronger activity against almost tested cancer lines with the exception of melanoma lines (Tables 2 and 3). However, 1,6-DPD/OH/NH₂ is remarkably weaker than 1,6-DPDONH₂ in inhibiting particular cell lines such as Colo 205 and melanoma. The reason for the relatively strong growth inhibition against the melanoma cell lines for 1,6-DPDONH₂ is not clear. Further experiments will be performed in the future. In the same cancer subpanel, at the GI₅₀ level, selectivity of 1,6-DPDONH₂ is notably higher than that of 1,6-DPD/OH/NH₂ in colon, breast cancer and melanoma cancer lines.

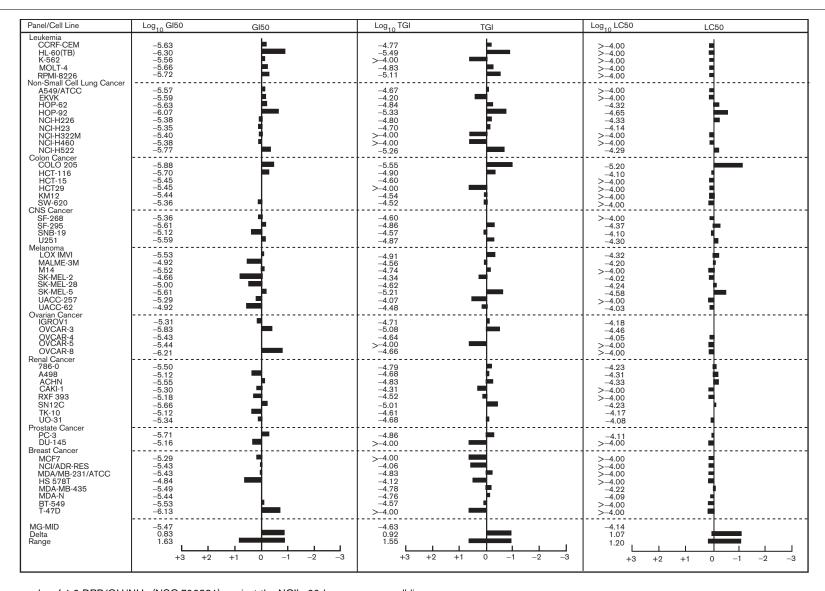
Table 3 The antitumor activities of 1,6-bis(4-(4-amino-3-hydroxyphenoxy)phenyl)diamantine (NSC-706831)

Panel/cell line	Gl ₅₀ (μM)	TGI (μM)	LC ₅₀ (μM)
Leukemia			
CCRF-CEM	2.36	17.0	>100
HL-60(TB)	0.50	3.27	>100
K-562 MOLT-4	2.78	>100	>100
	2.21 1.92	14.9 7.75	>100 >100
RPMI-8226 NSCLC	1.92	7.75	/100
A549/ATCC	2.71	21.2	>100
EKVX	2.58	62.6	>100
HOP-62	2.34	14.6	48.3
HOP-92	0.85	4.69	22.3
NCI-H226	4.18	15.9	46.9
NCI-H23	4.48	19.8	72.3
NCI-H322M	3.99	>100	>100
NCI-H460	4.21	>100	>100
NCI-H522	1.71	5.45	51.0
Colon cancer			
Colo 205	1.31	2.85	6.24
HCT-116	1.99	12.6	79.4
HCT-15	3.51	25.2	>100
HT29	3.56	>100	>100
KM12 SW-620	3.61 4.40	28.6	>100 >100
CNS cancer	4.40	30.0	>100
SF-268	4.37	25.3	>100
SF-295	2.47	13.7	42.3
SNB-19	7.53	26.9	79.8
U251	2.57	13.6	50.5
Melanoma			
LOX IMVI	2.93	12.2	48.3
MALME-3M	12.0	27.6	63.5
M14	3.01	18.4	>100
SK-MEL-2	21.7	45.7	96.3
SK-MEL-28	10.1	24.1	57.8
SK-MEL-5	2.45	6.19	26.1
UACC-257	5.13	85.6	>100
UACC-62	11.9	33.2	93.0
Ovarian cancer	4.00	10.0	66.0
IGROV1	4.89	19.3	66.2
OVCAR-3 OVCAR-4	1.47 3.74	8.28 22.9	34.6 89.6
OVCAR-4 OVCAR-5	3.65	>100	>100
OVCAR-8	0.62	21.9	>100
Renal cancer	0.02	21.5	> 100
786-0	3.19	16.1	59.2
A498	7.64	21.0	49.4
ACHN	2.80	14.8	46.7
CAKI-1	5.02	49.1	>100
RXF-393	6.61	30.2	>100
SN12C	6.20	9.73	58.9
TK-10	7.61	24.3	67.7
UO-31	4.59	21.0	82.7
Prostate cancer			
PC-3	1.93	13.8	78.3
DU-145	6.95	>100	>100
Breast cancer	F 05	> 400	> 400
MCF-7	5.07	>100	>100
NCI/ADR-RES	3.69	86.2	>100
MDA-MB-231	3.75	14.9	>100
	14.4	75.0 16.5	>100 59.8
HS 578T	2 06		
MDA-MB-435	3.26		
MDA-MB-435 MDA-N	3.59	17.5	81.2
MDA-MB-435			

Flow cytometric analysis

The cell-cycle progression of Colo 205 cells was examined using flow cytometry after exposure to 0.5, 1, 2 or 4 µM 1,6-DPD/OH/NH₂ for 24–72 h. Figure 4(A) shows that the majority of Colo 205 cells accumulated in the G₁

phase (89%) with a decrease of cells in the S (8.1%) and G_2/M (2.9%) phase after treatment with 1 μ M 1,6-DPD/ OH/NH_2 for 48 h. Colo 205 cells were mainly in G_0/G_1 phase (87.1-94%), and only a few percent of cells in the S (2.1-10.3%) and G_2/M (2.7-4.3%) phase after exposure to 2 or $4\mu M$ 1,6-DPD/OH/NH₂ for 24–72 h. These results showed that treatment of colon cancer cells with 1,6-DPD/OH/NH₂ resulted in increased G₀/G₁ phase with a concomitant decrease of cells in the S and G₂/M phase. From this result, 1,6-DPD/OH/NH₂ exhibited a potent G₁ arrest in Colo 205 cells in a dose-dependent manner. Compared with other G₁ arresting compounds, there are no similar structures to that of 1,6-DPD/OH/NH₂. The targets and action mechanism of 1,6-DPD/OH/NH₂induced G₁ arrest will be further studied. Table 4 shows that majority of Colo 205 cells accumulated in the G₁ phase (78–86%) with a decrease of cells in the S phase (4.6-13.6%) after treatment with $1-10 \,\mu\text{M}$ 1,6-DPDONH₂ for 24–72 h. The results also suggest that 1,6-DPDONH₂ induces G₁ arrest in Colo 205 cells. Those phenomena are similar for 1,6-DPDONH₂ and 1,6-DPD/OH/NH₂ because the structure and the mechanism of inhibition may be essentially the same. The results also suggested that structure I is the core structure for the antitumor activity.

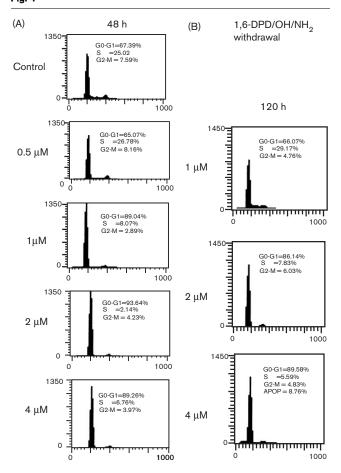

The irreversible effect of 1,6-DPD/OH/NH₂-induced cycle arrest of Colo 205

To further investigate whether the 1,6-DPD/OH/NH₂induced cycle arrest was reversible, Colo 205 cells were treated with 1,6-DPD/OH/NH₂ for 72 h and the cells were withdrawn from 1,6-DPD/OH/NH₂ by culturing in fresh medium for another 72, 96 or 120 h. As shown in Fig. 4(B) at 120 h after removal of 1 μM 1,6-DPD/OH/NH₂ from the medium, the cycle arrest of Colo 205 was reversed and returned to the control level. However, no reversal effect was observed after 2 or 4 µM 1,6-DPD/ OH/NH₂ treatment and then withdrawal for 120 h. The population of sub-G₀/G₁ cells was not observed on 1,6-DPD/OH/NH₂-treated cells, except the cells after 4 µM 1,6-DPD/OH/NH₂ treatment then withdrawal for 120 h (8.76%). These results highlight the important properties of the irreversible differentiation effect of 1,6-DPD/OH/ NH₂. One possibility is that the relatively lipophilic nature of 1,6-DPD/OH/NH₂ reduces cellular efflux upon rinsing of drug-containing medium after the initial drug exposure. The continued growth-inhibitory activity may be due to residual intracellular drug.

In vivo acute toxicity of single-dose challenge of 1,6-DPDONH₂

We further examined the *in vivo* acute toxicity of 1,6-DPDONH₂; female and male BALB/c mice were used. 1,6-DPDONH₂ was administered as single dose via oral or i.p. injection at doses of 5 or 2 g/kg (volume of injection: 0.25 or 0.1 ml/10 g of body weight), respectively. The doses were used according to the maximum

Fig. 3



The mean graphs of 1,6-DPD/OH/NH₂ (NSC-706831) against the NCl's 60 human cancer cell lines.

Table 4 Cell-cycle analysis of 1,6-DPDONH₂-treated Colo 205 cells

Days	Phase of the cell cycle	1,6-DPDONH ₂ (μM)			
		Vehicle	0.1	1	10
1	G₀/G₁	46.8	52.8	78.1	77.9
	S	38.5	35.8	13.6	12.7
	G_2/M	14.7	11.4	8.4	9.4
2	G_0/G_1	48.2	60.9	86.0	83.5
	S	39.3	29.0	4.6	8.7
	G_2/M	12.5	10.1	9.4	7.6
3	G_0/G_1	49.2	58.4	84.3	84.7
	S	43.2	32.0	6.1	7.0
	G_2/M	7.6	9.5	9.5	8.3

Fig. 4

(A) The effect of 1,6-DPD/OH/NH2 on cell-cycle arrest at 48 h in Colo 205 colon cancer cell lines. (B) The irreversible effect of 1,6-DPD/OH/ NH₂-induced cycle arrest of Colo 205 Cells. Cells were harvested at 120 h after 1, 2 or 4 μM 1,6-DPD/OH/NH₂ treatment for 72 h, then withdrawal.

tolerated dose of the tested compound [19,20]. With treatment of BALB/c mice with single-dose 1,6-DPDONH₂ (5 g/kg; oral, 2 g/kg; i.p.), the body weight showed no significant (P < 0.05) reduction in both male and female mice as compared to control groups. In addition, liver and kidney function were as same as the control. Moreover, no tissue damage was observed in liver,

lung and kidney after examination of the tissue slices stained with hematoxylin & eosin. These results showed the single-dose challenge of 1,6-DPDONH₂ in mice produced no obviously acute toxicity.

Disordered proliferation is one of the characteristics of most malignant tumors. Therefore, restoring normal cellcycle control in tumor cells by using small molecule inhibitors of the cell cycle has been considered for anticancer chemotherapy. Recent studies have shown that the G₁ phase of the cell cycle is an important period where various signals interact to determine the proliferation, quiescence, differentiation or apoptosis of cells [10,11]. In the present study, we have demonstrated that 1,6-DPD/OH/NH2 could mediate accumulation of Colo 205 cells in G₁ phase. Moreover, single-dose challenge of 1,6-DPDONH2 in mice produced no obviously acute toxicity, indicating the possibility that 1,6-DPDONH₂ may be a promising candidate for clinical therapeutic protocols and merit further investigation. Therefore, the combination with other antineoplastic agents (e.g. a G₁targeting agent [21]) in several different administration schedules will be further estimated in human colon cancer cells.

Conclusion

Herein we describe the in vitro antitumor and in vivo acute toxicity profile of 1,6-DPDONH₂. The SAR study of diamantane derivatives clarified that the conformation of 1,6-DPDONH₂ was essential for significant antitumor activity. Comparison of the growth inhibition of 1,6-DPDONH₂ and 1,6-DPD/OH/NH₂ indicated that 1,6-DPD/OH/NH₂ possessed stronger activity against almost all tested cancer lines with the exception of melanoma lines. However, 1,6-DPDONH₂ exhibited strong growthinhibitory activity and high selectivity against the melanoma lines. In addition, 1,6-DPDONH2 and 1,6-DPD/OH/NH₂ could mediate accumulation of Colo 205 cells in the G₁ phase. Moreover, single-dose challenge of 1,6-DPDONH₂ in mice produced no obviously acute toxicity, indicating the possibility that 1,6-DPDONH₂ may be a promising candidate for clinical therapeutic protocols and merit further investigation.

Acknowledgments

The authors are grateful to Drs Ven L. Narayanan, Edward Sausville, Yali F. Hallock, Anthony B. Mauger and Robert J. Schultz at the NCI for kind assistance. We are grateful to the National Science Council of the Republic of China for the support of this work.

References

- Aigami K, Inamoto Y, Takaishi N, Hattori K. Biologically active polycycloalkanes. 1. Antiviral adamantine derivatives. J Med Chem 1975; 18:713-721.
- Tverdislov VA, el-Karadagi S, Kharitonenkov IG, Glaser R, Donath E, Herrmann A, et al. Interaction of the antivirus agents remantadine and

- amantadine with lipid membranes and the influence on the curvature of human red cells. Gen Physiol Biophys 1986; 5:61-75.
- Chen HSV, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, et al. Open-channel block of N-methyl-p-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 1992; 12:4427-4436.
- Wang JJ, Chern YT, Chang YF, Liu TY, Chi CW. Dimethyladamantylmaleimide-induced in vitro and in vivo growth inhibition of human colon cancer Colo 205 cells. Anticancer Drugs 2002; 13:533-543.
- Kornhuber J. Bormann J. Hubers M. Rusche K. Riederer P. Effects of the 1amino-adamantanes at the MK-801-binding site of the NMDA-receptorgated ion channel: a human postmortem brain study. Eur J Pharmacol 1991; 206:297-300.
- Donath E, Herrmann A, Coakley WT, Groth T, Egger M, Taeger M. The influence of the antiviral drugs amantadine and remantadine on erythrocyte and platelet membranes and its comparison with that of tetracaine. Biochem Pharmacol 1987; 36:481-487.
- Tsuzuki N, Hama T, Kawada M, Hasui A, Konishi R, Shiwa S, et al. Admantane as a brain-directed drug carrier for poorly absorbed drug. 2. AZT derivatives conjugated with the 1-admantane moiety. J Pharmac Sci 1994;
- Chen CSH, Shen DM, Wentzek SE. Preparation of adamantane and diamantane derivatives as antivirals. WO 9428885 Al; 1994.
- Hung DT, Jamison TF, Schreiber SL. Understanding and controlling the cell cycle with natural products. Chem Biol 1996; 3:623-639.
- 10 Sherr CJ. Cancer cell cycles. Science 1996; 274:1672-1677.
- 11 Sherr CJ. G₁ phase progression: cycling on cue. Cell 1994; 79:551-555.

- 12 Chern YT. Low dielectric constants of soluble polyimides derived from novel 1,6-bis(4-(4-aminophenoxy)phenyl)diamantane. Macromolecules 1998; **31**:5837-5844.
- 13 Chern YT, Wang JJ. Synthesis of 1,6-diaminodiamantane. Tetrahedron Lett 1995; 36:5805-5806.
- Chern YT, Huang CM. Synthesis and characterization of new polyimides derived from 4,9-diaminodiamantane. Polymer 1998; 39:6643-6648.
- Chern YT. High subglass transitions appear in the rigid polyimides derived from novel 1,6-bis(4-aminophenyl)diamantane. Macromolecules 1998; **31**:1898-1905.
- Chern YT, Shiue HC. High subglass transitions temperatures and low dielectric constants of polyimides derived from 4,9-bis(4-aminophenyl) diamantane. Chem Mater 1998; 10:210-216.
- 17 Chern YT, Shiue HC. Low dielectric constants of soluble polyimides derived from novel 4,9-bis(4-(4-aminophenoxy)phenyl)diamantane. Macromolecules 1997: 30:5766-5772.
- Monga M, Sausville EA. Developmental therapeutics program at the NCI: molecular target and drug discovery process. Leukemia 2002; 16:520-
- OECD. Acute oral toxicity (401). In: OCED Guidelines for Testing of Chemicals. Paris: OECD; 1987.
- Auletta CS. Acute, subchronic, and chronic toxicology. In: Derelanko MJ (editor): CRC Handbook of Toxicology, 3rd edn. Boca Raton, FL: CRC Press; 1995, pp. 51-104.
- 21 Takashi O, Hiroshi Y, Tatsuo O, Kentaro Y, Yoichi O, Naoko HS, et al. Discovery of novel antitumor sulfonamides targeting G₁ phase of the cell. J Med Chem 1999; 42:3789-3799.